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The Laplacian on a random one-dimensional lattice 

E J Gardnert, C Itzykson and B Derrida 
Cen-Saclay, 91191 Cif-sur-Yvette Cedex, France 

Received 3 June 1983, in final form 10 October 1983 

Abstract. We study the spectrum of (minus) the Laplacian on a random one-dimensional 
lattice. It extends monotonically throughout the positive real axis with a continuum limit 
behaviour for small values. We find as expected localisation effects throughout the whole 
range. We use a variety of techniques which are shown to be consistent and in agreement 
with a Monte Carlo simulation. They include small and large disorder expansions, direct 
integral equations for probability distributions as well as the replica method. The latter 
is also used to investigate Green functions. 

1. Introduction 

To test the recent proposal by Christ et a1 (1982a, b) of using a random lattice instead 
of a regular one, as a substitute for continuous space-time in strong coupling field 
theory, we investigate here the one-dimensional case. We concentrate on free fields 
or equivalently on Brownian motion. Although this example is rather simple, it is also 
quite instructive. It illustrates the difficulties and possible limitations of the use of such 
random lattices. The price paid for translational (and rotational) symmetry restoration 
is of course the necessity of performing averages. Under ‘experimental’ situations this 
might turn out to be a quite formidable task. A measurement on a large specimen 
would presumably require an appreciation of the full probability distribution of what- 
ever random variable (spectrum, Green function. . .) is considered. To put it differently, 
some quantities naturally equal on a regular lattice might turn out to be different in 
the random case due to different averaging procedures. 

New phenomena appear due to the disordered structure of the lattice. The most 
obvious one is localisation, i.e. a decay of ‘free’ wavefunctions at large distances. This 
is mostly apparent in the one-dimensional case, where this decay is exponential and 
measured in terms of a localisation length. Another aspect is that disorder induces 
interactions. If we think in terms of Brownian motion, we expect some short-distance 
effective attractive interaction between two particles on a random lattice. In other 
terms the average of products of propagators is not the product of averages. It is clear 
that a complete understanding of these disturbing effects is required in order to 
disentangle them from the study of genuine interactions if one would like to apply the 
method to problems like lattice gauge theories, for instance. 

Fortunately in one dimension it is possible to go rather far in this analysis. Numerous 
previous works have been devoted to  similar problems. We may quote for instance 
the study of a chain of random springs by Dyson (1953), and the investigation of a 
one-dimensional Schrodinger equation in a random potential by Halperin (1965). A 
review is given by Alexander et al (1981). 

t Supported by a Fellowship from the Royal Society. 
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1094 E J Gardner, C Ittykson and B Derrida 

Our  plan is the following. In § 2 we state the problem and establish the basic 
equations enabling one to  study the spectrum of the random Laplacian. In § §  3 and 
4 we investigate approximations valid for small and large eigenvalues. Slightly 
improperly we call these eigenvalues frequencies and denote them by R. In § 5 we 
compare these expansions with data obtained from a numerical simulation. Good 
agreement is found for small and large R. The random spectrum is a smooth function 
behaving as R-”’ for small values and as R-* for large values. 

In § 6 we present some analysis of the original equations, showing that they can 
be solved recursively in terms of integrals. In § 7 we study an alternative method, the 
so-called replica trick, related to the original equations by an appropriate Fourier 
transformation. The results are in agreement with those of Stephen and Kariotis 
(1982) who also used the replica method and with the results of previous sections. 
We then extend the work of Stephen and Kariotis to calculate Green functions at 
non-zero separations. 

2. Derivation of the equations 

In a previous paper (Itzykson 1983) we have discussed the free field equations in 
arbitrary dimensions following the prescriptions of Christ et al (1982). Let us just 
recall that the sites are randomly distributed in space and the lattice is constructed 
according to the prescriptions of Christ er a1 (1982). In one dimension we are left 
with the Laplacian on scalar fields 

neighbours 1 

In one dimension cr,, is equal to one, I,, is the distance between neighbours and U, the 
volume of a cell, i.e. ( I i , I + l  + l i - l , , ) /2  in one dimension. W e  will simplify the problem 
by setting a, equal to its mean value which we take as unit of length. This will not 
change any essential feature of the results. The points may then be ordered along the 
line. Their separations 1 , , 1 + 1  I , + ,  are independent Poissonian variables with mean one, 
i.e. 

(2) p ( l m , I ,  , . . .  )dI, dl, . . . =  exp[-(l,+I,+ ...)I dl,dl , . .  .. 

( ( ~ n + l -  v n ) /  In - ( ( ~ n  - ( ~ n -  1 I /  I n - ] =  - n ( ~ n *  

The eigenvalue equation for the Laplacian is written 

(3)  
The spectrum corresponds to Cl > 0, Cl having the dimension (length)-’ when restoring 
the units. 

The average density of states per unit length, and unit frequency range, is denoted 
p(R). The existence of an ultraviolet cut-off is reflected in the normalisation 

JOm dCl p ( ~ )  = 1. (4) 

Rather than solving (3) directly, we consider a similar equation with -R replaced by 
w > 0. Introducing new variables Qn = (qni - ]  - pn>/  In gives the equation 

Qn+,-2Qn+Qn-,=wlnQn. ( 5 )  
Therefore Q, satisfies Laplace’s equation on a regular lattice, labelled by the index 
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of the sites n, with a potential term wl,Q,. At sufficiently large n the Q,'s will grow 
exponentially with n 

Q, - eY'"" (6) 

with a positive Liapunov exponent y ( w ) .  If initial conditions are specified at n = 0,1 ,  
then Q, is a polynomial of degree n in w with roots at values -Os which in the limit 
n + cc correspond to the eigenvalues in (3). Therefore 

n 
Q, - n ( w + Q s ) = e x p  ln(w+Q,) 

s =  1 n - x  
(7) 

and so from Dyson (1953), Thouless (1972) 

The second-order linear equation (5) may be transformed to a first-order nonlinear 
one by making a change of variable R, = Qfltl/Q,, with R, satisfying 

R,+R;!, = 2 + 4  (9) 

At large n, from (6), R, behaves as eY'"' and so 
1 d .  

y ( w )  = lim (In R,,), p(O) =- Im - lim (In R,,)lu=-n-lF. (10) 
fl-x 7~ dwn-r  

Here the brackets mean an average over the probability distribution of the separa- 
tions 1. 

It is possible to derive an integral equation for P,(R,), where P,(R,) dR, is the 
probability that the random variable R, has value between R, and R, +dR,. We set 
Ro = 1. The 1's are independent and R,-] depends only on l,, i < n. Consequently I ,  
and R,-l are also independent. From (9) 

X 

P,,(R,,)=J dR,-l P,-l(R,-l) loTd1 e-'S(R,+R;!, - 2 - 4 .  (11) 

As n goes to infinity, P, tends to a fixed distribution P. One can check that for w > 0, 
this distibution is concentrated on [ l ,  CO],  see equation (9). Thus 

P ( R )  = lla dR '  P (R ' )  lom dl  e-'S(R + R'-' - 2 - wl)  

I 

Equations (1 1) and (12) easily generalise to an arbitrary distribution p (  I )  dl. What 
makes equation (12) non-trivial is the presence of a 8 function. Otherwise it would 
readily be solved. The recurrence relation (1 1 )  implies that (12) must admit a positive 
normalisable density of probability as a solution. We postpone to § 6 a detailed analysis 
of this equation. From (10) the index y ( w )  is 

y(w) = dR P ( R )  In R. (13) 

Before considering the random case we first determine the density p for a regular 
lattice with unit spacing. In this case P ( R )  = 6(R - A )  where A is the limit of R,, 

llX 
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solution of (9) with I ,  = 1 ,  i.e. the largest root of 

A*- 2( 1 + w/2)A + 1 =0,  A = 1 + w /  2 + ( w  + ~ ~ 1 4 ) " ~ .  (14) 

(15) 

Therefore 
?,,(U) =In[ 1 + w/2 + ( w  + ~ ~ / 4 ) " ~ ] ,  

On the regular lattice the spectrum is of course restricted to a finite band 0 < R < 4, 
corresponding to a Brillouin zone ikmomentum space, and for small R, po has the 
continuum limit behaviour (27r- ' / JR.  The integral of the latter is of course divergent 
corresponding to  an  infinite number of modes per unit-volume. 

3. Weak disorder-low frequency expansion 

In order to solve (9) in the random case, we artificially introduce a parameter A, 
measuring the deviation of the lattice from a regular one. It turns out that the 
corresponding expansion is useful for small w (Derrida and Orbach 1983), the large 
wavelength limit being weakly sensitive to the local disorder. We  set 

(16) 
where A will later be set equal t o  one. Since ( I , )  = 1 we have (2,) = 0 and the regular 
lattice result R, + A  as n -f CO is obtained for A = 0. Of course A is given by (14). Let 
(B), (C),  ( D ) ,  ( E ) .  . . be the averages of B,, C,, D,, E,, . . .. Then 

(17) 

I ,  = 1 + Az,, R, =A,  exp(AB,+A2C,+A30,+A4E,+. . .), 

? ( U ) =  y o ( w ) + A ( B  )+A2(C)+A3(D)+A4(E)+.  . . . 
Substituting the expansion (16) into (9),  we have for large n, A, + A, and using (14) 

A2 [exp(AB, + A2C, +. . .I - 13 
= A(A - 1)2z, -[exp- (AB,-1 + A2C,-, +. . .) - l)]. (18) 

This leads to the following recursion relations for the coefficients: 

(a) A 'B ,  = (A - 1 ) z ,  + B, - 1 ,  

Equations (18) and (19) show the relation between a small ( A -  l ) ,  i.e. w ,  and the A 
expansion. By taking averages of equations (19) and of their products, using the fact 
that Cn-l . . . , depend on z,, p < n, but are independent of z,, and that the 
averages d o  not depend on n, we obtain expressions for ( B ) ,  (C), . . . : 

(B) = 0, 

A - 1  1 3 t 2 A 2  [((A - 1 .)')I (20) 
( E ) = - : ( ( G z ) 4 ) - - -  2 A  -1 - A + l  
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The  first few expressions in (20) suggest that terms with one mean value of z's sum 
up  to (In [l + ( A  - l ) z / ( A  + l)]) for A = 1, but that there a re  also extra terms with two, 
th ree , .  . . mean values of 2's. W e  now prove this statement. 

From (18) with A set equal to one and B, + C, + D, + E, + . . . = X, 
A - 1  

( e X n - l )  = In  I+z,-- In l+- ( A'-1 
A2 ) ( A + l  A'-1 

A - 1  e-Xn-1- 
=In  ( 1+- A + l z " ) f l n ( l -  A2-1  

(-1)'P-l p A + l  1 -e-x"-, P-' -' p = 2  -' P r = l  (r)(xzfl)r( A2-1 ) 
The second term on the right-hand side is 

Taking averages and recalling that z ,  is independent of x , -~,  we obtain 

y (a) = In A + (X) 

= l n A +  ( In ( 1+- 2 5 i z ) )  +terms with at least two mean values. (21) 

From equations (19) we obtain the following expressions for averages of powers of X 
up  to order A 4 :  

(X)=-~(Z')+f(Z3)-$(Z4)-~[(3+2A')/(A4-1)]((Z2))2+.. . ,  

(Z4) 
1 (A'- 1)(  l l A 8 -  1 1A6+ 36A4- 11A'+ 11) +- 
12 (A"+ A' + 1)(A6+ A 4 +  A'+ 1) 

(22) 
1 6A" + 1 1A8 + A 6 +  36A4- 5A2+ 11 +- ((Z2))2+. . . , 2 ( A ~ + I ) ( A ~ + A ~ + ~ ) ( A ~ + A ~ + A ' + ~ )  

(Z4) 
(A2-  1)2 3 (A'- I ) ~ ( A ~ +  1) (Z3)-- 

(X3)=A4+A2+ 1 2 ( A 4 + A 2 + 1 ) ( A 6 + A 4 + A 2 + 1 )  

(A'- 1 ) (A8+4A6+ A 4 + A 2 + 3 )  
(A' +1) (A4+ A'+ 1 ) (A6+A4+ A'+ 1) + ( (Z2))2+.  . . , 

( (Z2)) '+  * 1 . , ( ~ 2 -  1i3 6(A2 - 1)' 
(x4)= A b +  A 4 +  A2  + 1 (z4)+(A2 + 1)(A6+ A4+  A'+ 1) 

where we have used the shorthand notation 

Z = ( A  - 1 )/  (A + 1) Z. 
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Let us prove in general that a term in ( X ” )  involving r z’s and k expectation values 
behaves at  least as (A  - l ) p + r - k  when A -f 1. Let t {  p , }  = (BP]CP2DP3 . . .), where C pI = p .  
Multiplying equations (19) as (a)Pl(b)P2(~)p3. . . gives an expression from t { p , }  of the  
form 

where u ~ , ~ ; , ~ ; , ,  are known coefficients. It is possible to  arrange the order of the 
calculation of these terms t so that [ { p i }  is calculated before t { p , }  if for some k 2 1, 
p :  = p z  for i > k and p i  < p k .  The above relation then expresses t {  p,}  as a function of 
terms t{ p1 - j ,  p i ,  p i ,  . , .} which have already been calculated, and the  required result 
may be proved inductively. For j =  0, p’ = p l  + E i a 2  p :  > p  and for j # O ,  p ” =  
p ,  + Z l z 2  pi  2 p .  Furthermore t (0 ,O.  0 , .  . .} = (B’C” . . . j  = 1, r = p = 0 and the lowest 
power of (A  - 1) is indeed zero. Let pi > 0 for at  least one value of i. For j = 0 a term 
in t {  p l ,  pi ,  . , .} with r z’s and k expectation values has lowest power of (A  - 1)  greater 
than o r  equal to p’ + r - k which is larger than or  equal to p + 1 + r -  k ,  since p’ > p. 
The prefactor (AZp - l)-’  contains a factor ( A  - l)-’, and so the corresponding lowest 
power is at least p +  r -  k .  For j #  0 a term in t { p l  - j ,  p i , .  . .}with ( r - j )  z’s and ( k -  1) 
expectation values has a lowest power of ( A  - 1)  at least equal to ( p ” - j )  + ( r  -1) - k - 
1 3 p +  r - 2j- k + 1 .  Multiplying by (A’” - 1 )-‘(z’)(A - 1)2’  gives a term with k mean 
values and r powers of z ,  the exponent of ( A  - 1) being now at least p +  r -  k. Our  
assertion is therefore proved, and at a given order in z (or A )  the term with the highest 
number of expectation values (highest value of k )  also has the smallest power of (A  - 1 ) .  

From this remark it follows that we can figure out the leading behaviour in (A  - 1) 
of the fifth- and sixth-order terms, denoted (f) and (G), using (22) and (23): 

A - 1  A - 1  

( G ) = - -  2 (A2-1)2  [((Z9I2+. . . . 
l 5  

We now obtain the small w behaviour of the index y ( w )  from the  weak disorder 
expansion ( 17) .  From (14) 

+0(w5/2j. (25) A - 1 = w 1 / 2  + iw + $ w 3 / 2  

Therefore to order w 2  

y ( w )  = w ” 2 - -  ; W ( Z * )  - &oJ~”‘[ 16 - 16(z3) + ~ S ( ( Z ’ ) ) ~ ]  

+&w2[  16(z2) - 8( z4) + 24((z2))’+ 24(z2)(z3) - 1 5 ( ( ~ ~ ) ) ~ ]  + O( w “ ~ ) .  

(26) 

= w 1 / 2 - $ w  + ~ w 3 / 2 + ~ w 2 + ~ ( w 5 / 2 ) .  (27) 

For the Poisson distribution (2’) = 1, ( z 3 )  = 2, (z4) = 9 , .  . . and 

Through analytic continuation 
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A comparison of (36) and (15) shows that the next to leading term in the spectral 
function for the random lattice is a factor of --A smaller than for the regular case, and 
this is significantly closer to the continuum density. 

The interpretation of (28), a new term, since for a regular lattice y(-R-ie) is 
purely imaginary on the spectrum, is that it corresponds to an inverse localisation 
length L ( n )  

L (R)  = 8/R-$+O(R). (31) 

Bounded solutions of (3) must most likely decrease exponentially with distance. Since 
L(R) goes to infinity as R goes to zero, the localisation does not appear in the continuum 
limit. The behaviour at large distances of small R wavefunctions is, however, affected 
by disorder, which might seem to be a limitation for the use of a random lattice in the 
computation of particle spectra. These effects should carefully be studied in higher 
dimensions. The low-order terms in L(R)  seem to imply, as we shall verify, that it 
decreases with increasing 0. As L(R) reaches values of order unity, we expect results 
on a random lattice to be significantly different from those on a regular one. At that 
point a weak disorder expansion becomes irrelevant. In 0 4 an alternative method 
valid for large frequency will be studied. 

4. Large frequency expansion 

At large values of the frequency the states are strongly localised. Correspondingly 
y ( w )  can be determined by considering only sites which are a few spacings apart. From 
(9), R, may be written as a continued fraction, the presence of a large w in the 
denominators allowing a truncation to any desired order of accuracy, 

1 
1 '  

2+wl,-, . . . 
R,  = 2 + wl, - 

2+0l,-1- 

so  

For the Poisson distribution 

(ln(2+w!))=ln 2 + w ( ( 2 + w l ) - ' )  

= In 2 + e 2 / w  [In i- y +---{ 2 1  ?I2 + L ( z ) 2  . . . ] ,  
w 2(2!) w 3(3!) w 

(( (2 + w l ) - ' ) p + ' )  = ( p2pw)-' + O(0Y2),  p a  1. 

Here y is Euler's constant 0.577 22 and we shall use C = e y  = 1.781 07. 
Then to order w - 2  

(34) 

The last term is the first to involve l,, 1,-' and ln-2.  From (34), it is of order (In w ) ~ / w ~ ,  
and so can be dropped in a calculation up to K2.  
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To this order 

y ( w )  = In-+- E :( ln-+ 2c w 1 ) - ~ [ ( l n ~ - l ) ' + q - 4 ] + ~ [ ( ~ ) 3 ] .  

The constant -q is given by 
X 1 

I = Liz($) - 1 - 3 In = 0.130 70. 
n = T ( t + l ;  t 4 (37) 

According to (36) 

Re y ( -R-k )  

For the spectral density this yields 

p ( R ) = 2 / R 2 + ( 4 / Q 3 ) ( l n ( R / 2 C ) - ~ ) + .  . . . 
I t  is remarkable that logarithms enter these expressions; they arise from the non- 
vanishing probability of small intervals. We note that from L-'(R) = Re y(-R-iE), 
L(R) - l / l n  R ,  implying strong localisation at large R ,  while the density of states 
vanishes like l /Rz .  In d dimensions one conjectures that this behaviour generalises 
to l /Rd". 

5. Comparison with numerical simulations 

The smooth behaviour predicted at small and large values of R could leave the possibility 
of some accident or bump at intermediate values. This is what prompted a numerical 
simulation using the recurrence relation (9) directly for w = -0 -is, R > 0. The small 
E was chosen at first as 0.02, then dropped to zero to count the number of sign changes 
in R,  which give a direct measurement of the density p(R).  Runs were performed 
with 250 000 iterations and two random number generators were seen to yield compat- 
ible results. The data collected are shown in figure l ( a )  (density p ) ,  l ( b )  (Im y, 
integrated density), l ( c )  (Re y, inverse localisation length). The results show a smooth 
transition between the small and large values of R and are compared with the respective 
expansions. The agreement is quite reasonable. Finally in figure 2 we compare the 
density of states for a regular lattice, a random Poissonian one and the continuum. 

The one-dimensional problem studied here allows not only detailed analysis, but 
also quite a straightforward numerical simulation. The situation unfortunately is not 
so simple in higher dimensions. 

6. Analytical study 

It is possible to investigate the probability density P ( R )  of (12) in greater detail. The 
equation involves the contractive map R' + R = 2 - 1/R' under which the interval 
[ 1,033 is successively mapped onto [ 1, 1 + 1/ n]. From (1 l),  P ( R )  is a distinct analytic 
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10 2 4 6 8 0 2 4 6 8 10 
n R 

function in each of the intervals [1+ l ( n  + l ) ,  1 + 1/ n]. It is therefore natural to set 

R = 1 + l / x ,  P ( R )  = x*P(x), o s x < c o .  (41) 

Then 

and 

For O S x < l  we have 

p ( x )  = po( x) = ( a ~ x ' ) - ~  e-'"' 

I I I - '\ , I 

I~< -\-__-- 

c , 

i 
~ 

i " .  . . . . . . . . . . . . . . . . .  , . _  " . . . ,  , . .  , . .  

0 2 4 6 8 10 
R 

(44) 

Figure 2. The density of states in the continuum (full line), on a regular lattice (broken 
line) and on a random lattice (dotted line). 
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where Q is a normalising constant such that 

Q - I  = loz dx p ( x ) exp[ 1 / w ( x + 1 13. (45) 

To characterise the departure of p(x)  from po(x) for x >  1 we define q(x)  such that 

p(x)  = po(x)q(x). (46) 

6) q(x)  = 1, O S X S l .  (47) 

(48) 

and so q(x)  can be constructed recursively in the interval [n ,  n + 11 from its values in 
[0, n ] ,  and using also (45) 

It has the following properties. 

(ii) From (42) in differential form 

exp[-l/w(x + l ) ]  dq( x + 1) + q(  x) d[exp( -l /wx)] = 0 

q ( x + l ) = l -  (49) 

(iii) The function q(x)  is positive and monotonically decreasing as a consequence 
of (47). It decreases at least as w'-"/T(x) for large x. It is analytic in each interval 
( n ,  n + 1) an is globally infinitely differentiable. 

(iv) From (43) 
iE 

d x q ( x ) w , z = x q ( n )  1 

The second expression may be obtained from (48) using 

Repeating the process yields (SO). 
(v) The index y is then given by 

where s p ( w )  = s,(w, x = 1) and s,(w, x) is a polyomial in both w and x of degree p in 
w with 

so(w, x) = x, 

s,(w, x) = w(x+p*)(d/dx)s,-,(w, x) + s , - , ( w ,  x),  

s p ( w )  = s p ( w ,  1).  

(53) 

To get the first equality in (52) we proceed as follows: 
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where the last step follows from (48). Iterating the process n times and taking the 
limit n +CO gives the first equality in ( 5 2 ) .  To obtain the seond we write 

From (48) the last integral may be written 

w (  1 +4w)q(3) 
d I: dx 

+ dx q(x)  -{[w(x - 1)'+ x - 2]e-1'wx}. 

Repeating this process gives the second equality in ( 5 2 )  as well as the recurence 
relations (53) which yield 

So(@) = 1, 

s 3 ( w )  = (1 +4w)(  1 + 9w) + 16w[18w2+ (1 +4w)(  1 +6w)]. 

From (51) and (52),  y ( w )  is the ratio of two series, each involving 4 evaluated at 
integer points. The large frequency expansion of B 4 can be reconstructed from these 
expressions. 

s ~ ( w )  = (1  + 4 ~ ) ,  s 2 ( w )  = (1 +4w)(  1 +9w), 
(54) 

7. The replica method 

It is of interest to calculate two- and higher-point Green functions in order to learn 
something about the behaviour of states in space. We shall illustrate these computations 
using the replica method. The latter reduces a quenched average to an annealed one, 
the price paid being the introduction of n replicas of the partition function in the limit 
n + 0 .  We first describe briefly the technique, show its relation with our previous 
analysis and prove that it yields for the exponent y ( w )  the same results as before. 
The low frequency expansion (26) is explicitly recovered in agreement with Stephen 
and Kariotis (1982). We then extend the method to the calculation of Green functions 
at non-zero separations. 

7.1. Calculation of y ( w )  

We work in terms of the function p,, = p(x,,) introduced in 0 2 and study the partition 
function of a statistical model corresponding to (5). In the presence of a source J, the 
free energy is 

where 

H ( V ,  1 )  =i 1 [(pi -pztl)2/li + ~ C P : I .  ( 5 6 )  
I 

If n replicas of the model are introduced (labelled by indices a ranging from 1 to n ) ,  
H will be replaced by Xe H(9,, 1 )  which from its quadratic nature will be equal to 
the same function involving vector valued Q'S and O( n)-invariant scalar products. The 
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free energy can then be written in terms of an n + 0 limit as 

where H(cp, 1) is given by an expression similar to ( 5 6 )  with vector valued cp’s instead 
of scalar ones. A calculation will be easily feasible if the limit n+O and the average 
can be interchanged. This appears justified as we will show by computing y ( w ) ,  related 
to the propagator at zero separation Goo(w) through 

Here CF, is the contribution to the right or to the left of the origin in the path integral, 
and represents the ground state wavefunction of the transfer matrix. Henceforth the 
limit n + 0 is always understood. From translational invariance satisfies 

$ ( c p 2 )  = J dcp’(exp[-(21)-’(cp-cp’)21) exp(-wp’2/2)+(cp’2). (59) 

We have taken into account the fact that the ground state is O ( n )  invariant. Due to 
the limit n+O the corresponding eigenvalue is 1.  In the absence of disorder (59) 
would reduce to 

+dcp2) = dcp‘ exp[-(cp- s0’)~/2-  wcp”/21+0((~’~), 

+o(cp2) = exp[- t~(~)cp’ I ,  
(59’) 

CY ( w  ) = ( w  + w 2/4)’’2 - w / 2. 

l 
If we note that 

lim i dcp exp(-pcp2)n-’(cp2)’+’ = t ! / 2 p ’ + ’  
n+O 

we recover the known result 

with the same A introduced in (4), i.e. A = 1 + w/2+ ( w  + ~ ~ / 4 ) * / ~ .  One way to proceed 
next is to perform the weak disorder (small A )  expansion analogous to the one studied 
in 0 3. To demonstrate its working we shall simply compute the A 2  corrections (the 
first non-vanishing one). Detailed calculations of similar nature are reported by 
Stephen and Kariotis (1982) using a saddle point method. We set + ( c p 2 )  = 
+o(cp2)[1 + G2((p2) +.  . .]. Similarly 1 = 1 + z and we keep terms up to order 2’. This 
yields 

It is readily verified that 
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which is obtained by studying the general transform of exp[ bcp’2 + c(cp’ -(P)~]. This 
shows that Q 2 ( c p 2 )  is a second-degree polynomial in c p 2 ,  which is found equal to 

Inserting in equation (58) yields, with p = ( w  + ~ ’ / 4 ) ” ~  = (A2-  1)/2A, 

and this agrees of course with our previous result, equations (20) and (26). The amount 
of algebra required here is far greater than the direct computation of § 3. Of course 
one could proceed similarly to compute higher terms, the correction terms Q 3 ,  I ~ J ~ .  . . 
being polynomials in c p 2 .  

We may also define a ground state wavefunction for the variables Q, = ((P,+~ - c p , ) / l ,  
with corresponding Hamiltonian H =E, 4( Q, - Q , + 1 ) 2 + ~ ~ 1 , Q f .  Generalising to n com- 
ponents and letting n --* 0, the wavefunction x( Q’) satisfies 

x( Q 2 )  = 1 dQ’ exp[-$( Q - Q ’ ) 2 1 ( e ~ ~ ( - 4 ~ I Q ‘ 2 ) ) ~ (  Q ’ 2 ) .  

The relation between x and 4 is a Fourier transform (Stephen and Kariotis 1982) 

Q ( c p )  = 1 d Q  exp(icp - QJw)(exp(-twlQ’))x(Q), 

(65) 

(exp(-b1Q2))x(Q) = dcp exp(-iJ& Q ) Q ( c p ) .  (66) 

The validity of the replica method can be established (Lin 1970) by studying the 
relation of Q and cp with the probability P ( R )  of § 2 or alternatively p(x) of (44). We 
have 

J 

x(Q2)(exp(-$wlQ dR P ( R )  exp ( -- RT1Q2) ,  

(67) 
P ( R )  =- 2.ni I I c-ie c+im dQ2 exp( 7 Q2)x(Q2)(exp(-fwlQ2)), 

4 r c+ im 

P(X) = ~k J 
The Laplace transform relations (67) (and (68)) imply that (R-1 ) /2  and Q2 (and 
$wx and c p 2 )  are conjugate variables. Similar relations hold in a variety of one- 

dQ2 exp($wxcp2)4(v2). 
C - i e  
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dimensional problems. From (68), we derive 

7.2. Green functions at arbitrary separation 

The field amplitude at a particular point in space is not defined unless it happens to 
belong to a given random lattice. Correspondingly there is some arbitrariness in the 
definition of Green functions at non-vanishing separations. We choose to take averages 
over lattices which contain all points at which the amplitude is required. For non-zero 
separations the number of spacings between distinct points can therefore take all values 
larger than or equal to one. For the two-point function evaluated between 0 and L 
we get the expression 

Z;==, J I I  dli SII dcpi exp[-H(cp, I ) - E l i ] [ ( c p 0 .  cpL)/n] S(L-Z:Op-’ li) 
Z:=.=, SII dli exp(-Z l i )  S(L-Z:Op-I l i )  

The denominator is equal to one for the Poisson distribution 

GOL(W) = 

00 LP-1 il 1 n d 1, exp( -c 1,) 8 ( L  - 6’ I , )  = e-L - - 1. 
p = l  

In the numerator it is understood that xO = 0, x1 = l o .  . . xL = 1, and cpL stands 
in fact in our former notation for cpp After averages G O L ( w )  is extended as a symmetric 
function of L and we can write 

For p = 1 there is no cp integral in F. Using the symmetry L + -L we can Fourier 
transform G and F as 

X 

F(cp’, cp, k )  = (Mp(cp’,  c p ;  k )  + k + - k ) .  
p= 1 

Here M is an operator with kernel 

M(cp’, c p )  = (exp[-i kl - i(cp’ -(PI’/ 13) exp( -iwcp’). ( 7 3 )  
and M P  is its pth power. Because of O ( n )  invariance the eigenstates of M transform 
as spherical harmonics. Since Jr is a scalar it follows from (72) that we need only 
compute vector harmonics of the form cp8,(cp2), the index r being used to distinguish 
among several possible solutions. 
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For the Poisson distribution we can write 

( p r ( k ,  w))-’cp’&(cp ) - dcp (exp[-%cp’-cp)2(1 +ik) / l l )  exp(-$wcp2)cp8,(cp2). (74) 

We use the following normalisations, compatible with our previous study 

l 2  - J  
1 dcp ( L 2 ( c p 2 )  exp(-iwcp2) = dcp(cp2/n)8f(cp2) exp(-iwcp2) = 1 (75) I 

and get the following expression for the Fourier transform of the propagator 

It can be remarked that the algebra is such that Gor as defined here does not reduce 
to Goo defined previously, in the limit L + 0. This is a drawback of our method due 
to the fact that randomness affects the kinetic rather than the potential term in H. 
Indeed it can be checked that in the limit L + 0 the only nonvanishing contribution 
arises from the one separation term in (70) with a result 

r 

with a weight exp(-wcp2) instead of exp(-iwcp2) in the correct answer (59). Hence 
one will rather study GoL in the large separation limit where the poles in (76) will 
generate a sequence of exponential terms each with oscillatory and damped behaviour, 
the latter being due to localisation effects. To this end we have performed a small w 
expansion of the various quantities involved to order w (keeping in mind that cp’ is of 
the order 1/Jw). We set 

xk = ( i+ k)cp2, Wk = W / (  1 + ik). 2 
X = Q  9 

Our results are as follows: 

$(x) =exp(-glwx)[l +(&U - ~ ~ ’ ~ / 3 ( 1 6 ) ~ ) ~ + ( & ~ ~ ’ ~ - ( 6 ( 1 6 ) ~ ) - ~ w ~ ) x ~  
- 

-( 18( 16)2)-1w5’2~3+ o3x4/8( 16)2+ O ( U ~ ’ ~ ) ] ,  (79) 
- 

8o(x)=N,’ exp(-g/wkXk)[l +(-Auk +&w:/2)xk +&wE)xt 

- (7 /  9.128) w 2”x: + (8( 1 6)2)-’ w : xJk + O( w 3’2)], 

(pO(w, k))-’=1-U:’2 ++Ok-awk 31 3 / 2  + o ( w 2 ) ,  
= 2(1 +ik)w:/2[1 + ; w : / ~  -&wk + o ( ~ ” ~ ) ] ,  (80) 
- 1 

81 (x)  =- exp(-g\iwkxk)[ 1 - ( w  :I2 + 9wk)xk + Gw:/2xk -&mix: + 0( U)], 
N1 

( p l ( w ,  k))- l  = 1 - 3 ~ : ’ ~  + y w k + 0 ( w 3 / 2 ) ,  

In general F r ( w k ) -  1 +(2r+1)w:’~ +. . ., r=O, 1 , 2 , .  . .. We can then obtain the 

I/N’ = 2( 1 + ik)w :’2 + ~ ( w ) .  
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numerators A: in (76). In particular there is a sum rule of the form 

Goo(w) =dr(w) /dw AS(w, 0 )  
r 

which can be used to check (79) and (80). Indeed 

Ao(w,  0 ) = ( 2 ~ N ~ ( w , O ) ) - ’ [ l - ~ w ~ ~ ~ + ~ w + .  . .I, 
A , ( w , O ) = ( N , ( w , O ) ) - ’ [ - ~ + .  . .], (82) 

which yields 

G o o ( w )  = Ai(o,  0) + A : ( w ,  0 )  + O ( w )  = ( l/2w1/’)[l - : w ” ~  +&w + O(w3/*)] 

in agreement with (27). 
We can interpret the denominators in (76) as giving a set of dispersion relations 

when continued to w = -R - iE. As stated previously they will generate a large L 
behaviour of GoL( -n - i~ )  of the form 

(83) 

lim GoL(-n-is)-Cg,exp(iRe kG-Im k J ) .  
L-;c. r 

From (80) we find for the first two terms 

Re ko = R1’2[ 1 + $40 + 0(R2)] ,  

Re k ,  = 3R1”[1 +O(R)] ,  

Im ko = aR + O(f12), 

Im kl  = ~ R [ l + O ( R ) ] .  
( 8 5 )  

The leading behaviour has an exponential decay in e-(n’4)r. This result may also be 
derived from the appendix of Casher and Lebowitz (1971). Our naive expectations 
were that it behaved like a wavefunction, i.e. in exp[-L/L(R)], where L(R) is the 
localisation length L(R) -n/8. The factor 2 of disagreement can be attributed to the 
different averages involved. 

Of course higher Green function can also be computed. Although we are consider- 
ing a free field theory, there are effective interactions between ‘particles’ generated 
by the average over randomness. The second dispersion relation in (85) shows that 
the first excited state behaves like a set of three free particles, but that it is more 
localised. To understand such effects it is easier to study the Q rather than the cp fields 
since the former react to the analogue of a random potential. The formalism is quite 
similar and in particular the dispersion relations are unchanged. Particles are then 
localised at positions where the potential is small, i.e. where I, the separation, is small 
and so the probability that they are close to each other is greater than on a regular 
lattice. To verify that there is an effective attraction we consider the four-point function 
at small w. The connected four-point function in momentum space to leading order 
(for the Q’s) is 

indicating a positive ( Q2)’ term in the effective action with a coefficient of order w2.  
Recall that in the usual case this term has a negative sign corresponding to repulsion 
among scalar particles. Equation (86) is nothing but a restatement that for small w 

(exp(-$wIQ2)) - exp(-$wQ’)[l +$(z2)w’(  0’)’ +.  . .] 
-exp[-$wQ2+3w2(z2)(Q2)’/4! +. . .I (87) 

and we should not be worried by the ‘wrong’ sign because of higher-order terms. 
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